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Abstract

An algorithm for the blind separation of mutually independent and/or temporally correlated sources

is presented in this paper. The algorithm is closely related to the maximum likelihood approach based

on entropy rate minimization but uses a simpler contrast function that can be accurately and efficiently

estimated using nearest-neighbor distances. The advantages of the new algorithm are highlighted using

simulations and real electroencephalographic data.
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I. INTRODUCTION

In this article we consider the simplest and most common Blind Source Separation (BSS) scenario:

x(n) =
M
∑

j=1

ajsj(n) = As(n) (1)

where A = [a1, . . . ,aM ] is an unknown M×M mixing matrix of full rank, s(n) = [s1(n), . . . , sM (n)]T

are the sources and x(n) = [x1(n), . . . , xM (n)]T the observed mixtures. The index n = 1, . . . , N denotes

discrete time instants. The goal of BSS is to estimate a separating matrix B such that the source signals

can be approximately recovered up to a permutation and scaling indeterminacy, i.e. BA ≈ PΛ where

P and Λ are an arbitrary permutation matrix and an arbitrary diagonal matrix, respectively. A major
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application of BSS is the separation of brain sources from electroencephalography (EEG) and its magnetic

counterpart, MEG [1].

At least three classes of source models have been proposed for which very efficient BSS algorithms

exist: non-Gaussian [2], spectrally diverse [3], or non-stationary [4] independent sources. Algorithms

unifying several of these source assumptions are especially promising for neuroscientific applications [5],

[6].

In this article we introduce a novel BSS contrast which simultaneously exploits non-Gaussianity and

temporal self-dependencies of the sources. Based on this contrast we develop a BSS algorithm which

is robust to the presence of time-lagged cross-dependencies between sources. Such cross-dependencies

are likely to occur in EEG/MEG applications due to (time-delayed) axonal propagation of information

across distributed brain areas.

II. DEFINITION OF THE BSS CONTRAST

For sources that behave like i.i.d. non-Gaussian random variables, the linear and instantaneous BSS

problem in Eq. 1 can be solved using Independent Component Analysis (ICA) [7]. If the observed mixtures

have a covariance matrix Σx = E
[

xx
T
]

, the ICA-based separating matrix is Bopt = RoptΣ
−1/2
x where

Ropt is the M × M unitary matrix that minimizes:

LH(R) =
M
∑

i=1

H
(

riΣ
−1/2
x

x

)

=
M
∑

i=1

H(ŝi) (2)

where R = [r1, . . . , rM ]T and H denotes Shannon entropy. But in most practical applications, and

especially in the case of EEG, the sources are not i.i.d. and are better modeled as stochastic processes

with (second and higher-order) temporal correlations. Let us consider sources that behave like mutually

independent stationary Markov processes of order d so that their temporal structure is confined within

the vector s
(d)
i = [si(n), si(n − 1), . . . , si(n − (d − 1))]. Note that, due to the stationarity of si, the joint

distribution of s
(d)
i is invariant with respect to shifts in the time index. The amount of temporal structure

in si (i.e. its temporal predictability) can be assessed by its entropy rate [8]:

Hr(si) = H
(

s
(d)
i

)

− H
(

s
(d−1)
i

)

(3)

Indeed, in the case of Markovian sources of order d, a maximum likelihood estimate of the separating

matrix is obtained by minimizing the entropy rate of the estimated sources [9]. However, estimating the

entropy rate requires the combination of two different estimates of joint entropy, which increases the
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final estimation error. We take here a simpler approach to entropy rate minimization that consists on

minimization of the following BSS contrast:

L(R) =
M
∑

i=1

H
(

ŝ
(d)
i

)

(4)

Intuitively, minimizing Eq. 4 will lead to source estimates which are maximally non-Gaussian (i.e.

spatially independent) and that have maximum temporal dependencies. Eq. 4 is a valid BSS contrast

because if s
(d)
i and s

(d)
j are mutually independent and at least one of them do not follow the Normal law,

then the following inequality holds [8], [10]:

L
(

αs
(d)
i + βs

(d)
j

)

≥ min
(

L
(

s
(d)
i

)

, L
(

s
(d)
j

))

with equality if and only if α = 0 and L
(

s
(d)
j

)

< L
(

s
(d)
i

)

, β = 0 and L
(

s
(d)
i

)

< L
(

s
(d)
j

)

, or

αβ = 0 and L
(

s
(d)
j

)

= L
(

s
(d)
i

)

. A generalization of this inequality to more than two sources can be

found in [11].

If the sources are not perfectly independent, the global minimum of independence-based contrasts,

like the one proposed here, might be spurious [10]. This is a crucial issue in the analysis of EEG data

since brain sources are likely to exchange information through time-delayed axonal pathways. Thus, time-

lagged cross-dependencies between the observed signals x1, . . . , xM should be minimized before using

any independence-based contrast for BSS. Moreover, pervasive autocorrelations like those found in EEG

time-series can also have a negative impact by effectively increasing the order of the Markov model that

best fits the sources. A straightforward solution to these two problems is to use a vector autoregressive

(VAR) model to filter out temporal correlations in the data [1]. Since the mixing matrix A in Eq. 1

commutes with the VAR filter, the filtered observations can be interpreted as a linear mixture of the

filtered sources with the same mixing matrix. Our numerical experiments confirm that VAR filtering has

generally positive effects on independence-based contrasts, especially in the separation of EEG sources.

A detailed analysis of the benefits and drawbacks of VAR pre-processing will be presented elsewhere.

III. ESTIMATION AND OPTIMIZATION

Evaluation of the BSS contrast in Eq. 4 requires the estimation of multivariate Shannon entropies. We

use an estimator based on k-nearest-neighbor distances [12]:

Ĥ
(

ŝ
(d)
i

)

= hk−1 − hN−1 + dE [log 2ǫ] (5)
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where ht = −
∑t

r=1 r−1, ǫ is the maximum norm distance from ŝ
(d)
i to its k-nearest neighbor and E[·]

is the expectation operator, which can be approximated by the sample mean. In the numerical experiments

below we always used k = 20 and d = 4. We preferred this estimator instead of fixed-bandwidth kernel-

based approaches due to its higher sensitivity to finer (high-order) details of the distributions [13]. The

optimum rotation minimizing the contrast in Eq. 4 is found using Jacobi rotations [7]. The resulting

ENRICA (ENtropy Rate-based ICA) algorithm can be summarized in the following steps:

1) Whiten the data through the transformation z = Σ̂
−1/2
x

x where Σ̂x = 1
N−1

∑N
i=1 x(n)xT (n).

2) Perform a temporal whitening by fitting a VAR model to z using ARfit [14] and computing the

residuals of the model: v(n) ∀n = 1, . . . , N .

3) Using Jacobi rotations, find the unitary matrix R̂ = [r̂1, r̂2, . . . , r̂M ]T minimizing
∑M

i=1 Ĥ
(

ŝ
d
i

)

,

where ŝi(n) = r̂iv(n).

4) Estimate the separating matrix as B̂ = R̂Σ̂
−1/2
x

.

IV. NUMERICAL EXPERIMENTS

In this section we assess the effectivity of ENRICA for separating (i) mutually independent sources

with non-linear temporal dynamics, (ii) sources with time-lagged cross-dependencies and (iii) mutually

independent EEG sources. In each of these scenarios we compared ENRICA with three groups of BSS

algorithms1:

• Algorithms commonly used with EEG data: Infomax [15], EfICA [2] and WASOBI [3].

• Algorithms based on non-parametric estimates of entropy: RADICAL [16], MILCA [13] and NpICA [17]

• Algorithms that exploit simultaneously temporal structure and spatial independence: MCOMBI [6],

ThinICA [5].

We tested the performance of all benchmark algorithms with and without preprocessing VAR filter in

order to assess objectively the merits of ENRICA’s contrast. In the first set of experiments we generated the

hidden sources using three identical Lorenz oscillators Φi :
(

Ẋi(t), Ẏi(t), Żi(t)
)

, ∀i = 1, 2, 3, described

by the differential equations:

1We only considered algorithms for which public implementations were available.
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Ẋi(t) = 10 (Yi(t) − Xi(t))

Ẏi(t) = 28Xi(t) − Yi(t) − Xi(t)Zi(t)

+
∑

j 6=i Kij (Yj(t − τji))
2

Żi(t) = Xi(t)Yi(t) −
8
3Zi(t)

We integrated these equations with a time step of 0.3 and the sources were obtained from the Y

components of the oscillators, i.e. si(t) = Yi(t) ∀i = 1, 2, 3. Each source contained 3000 samples. We

considered the case of uncoupled (Kij = 0 ∀i, j) and unidirectionally coupled oscillators (K21 = 1,

K32 = 1, Kij = 0 otherwise). In the latter case the coupling delays were τ21 = 10 and τ32 = 15. We

generated 200 realizations of the mixtures by using different initial conditions for the Lorenz systems

and random well-conditioned mixing matrices. Separation accuracy was assessed using the median

interference-to-signal ratio (ISR) [18]:

ISR = mediani



10 log





∑

k 6=i

G
2
ik/G

2
ii







 (6)

where Gik =
(

B̂A

)

ik
. In general, ISR values above -10 dBs are probably unacceptable in most

applications. The results in table I show that the optimal separation matrix corresponded to a robust

global minimum of ENRICA’s contrast function. VAR filtering was quite effective in removing spurious

global minima in ICA-based contrasts but was not able to remove the numerous local minima, which

explains the bad results of ICA algorithms based on local optimization (Infomax, EfICA and NpICA).

In order to assess the expected performance on real EEG data we tested ENRICA on mixtures of three

time-series extracted from a real EEG dataset [19]. Mutual independence was achieved by selecting, from

different electrodes, EEG epochs that did not overlap in time. This approach ensured that the time-courses

of the sources mimic the dynamics of the underlying brain sources. However, the total lack of cross-

dependencies between sources is unrealistic and, therefore, the numerical results of this experiment should

be taken as positively biased estimates. From Fig. 1 it is obvious that BSS based on temporal structure

clearly outperformed i.i.d.-based approaches, at least for realistic sample sizes. The poor convergence of

Infomax raises concerns on common practices among the EEG research community. For instance, [20]

recommends to use about 30M2 samples to estimate M sources but, in our experiments, Infomax needed

at least 10 times more samples to produce reliable source estimates. Fig. 2 shows the 90th percentile of the

median ISR for mixtures of more than three EEG sources. Even in high-dimensional problems, ENRICA

consistently outperformed the benchmark algorithms. The major disadvantage of ENRICA with respect
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TABLE I: Accuracy of the tested algorithms in the blind separation of three Lorenz oscillators. The

numbers in boldface are median values (across 200 random surrogates of the Lorenz mixtures) of the

median ISR. The subindices and superindices denote the 2.5% and 97.5% percentile values, respectively.

The rows marked with the term ”+VAR” indicate that VAR filtering was used to pre-process the observed

mixtures.

BSS Algorithm
ISR (dB)

uncoupled coupled

Infomax [15]
-13

0

−32 0
0

−1

+VAR -4
1

−17 -2
−1

−5

EfICA [2]
-7

0

−32 0
0

−1

+VAR -2
0

−9 -2
−1

−22

WASOBI [3]
-2

1

−14 -17
−14

−21

+VAR -3
1

−18 -12
−1

−26

RADICAL [16]
-32

−26

−38
-1

0

−28

+VAR -28
−21

−37
-21

−1

−33

MILCA [13]
-32

−26

−40
-8

0

−26

+VAR -26
−20

−35
-18

−6

−30

NpICA [17]
-33

0

−46 -1
0

−33

+VAR -29
0

−36 -4
−2

−33

MCOMBI [6]
-6

0

−31 -24
−1

−34

+VAR -3
0

−13 -2
−1

−28

ThinICA [5]
-30

−24

−41
-1

0

−19

+VAR -28
−23

−38
-18

−8

−28

ENRICA []
-34

−29

−42
-34

−27

−42

+VAR -34
−29

−41
-33

−26

−40
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Fig. 1: 90th percentile of the median ISR (in dBs) across 200 random surrogates of the three EEG sources.

For clarity we show only the results of the best performing algorithms. Full results of this experiment

are available online [21].
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Fig. 2: 90th percentile of the Amari error (in dBs) across 100 random surrogates of mixtures of 2 to 10

EEG sources. Each source contained 5000 samples.

to its closer competitor (MCOMBI) is computation time. Separation of 10 sources with 5000 samples,

required about 14 minutes for ENRICA compared to less than 1 second for MCOMBI 2. However, this

is acceptable in many EEG applications where reliability is far more important than computation time.

2The computations were all performed under MATLAB 7.8.0 (R2009a) for Windows XP, running on a Dell Optiplex 960

(Intel Core2 Quad CPU 2.83 GHz, 3.21 GB of RAM). All the code and datasets necessary for replicating the experiments shown

in this article are available in the Internet [21].
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V. CONCLUSIONS

A novel algorithm for blind separation of non-i.i.d. mutually independent sources has been introduced

in this article. Its potential for the separation of brain sources underlying scalp EEG has been demonstrated

using real EEG data. Moreover, our results cast some doubt on standard analysis practices among the

neuroscientific community and suggest that BSS-based separation of many (e.g. more than 10) EEG

sources might be unreliable in most experimental settings.
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