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Abstract

Directional connectivity in the brain has been typically computed between scalp

electroencephalographic (EEG) signals, neglecting the fact that correlations be-

tween scalp measurements are partly caused by volume conduction through the

brain tissues and the skull. Although recently proposed techniques are able to iden-

tify causality relationships between EEG sources rather than between recording

sites, most of them need a priori assumptions about the cerebral regions involved

in the EEG generation. We present a novel methodology based on multivariate au-

toregressive (MVAR) modeling and Independent Component Analysis (ICA) able to

determine the temporal activation of the intracerebral EEG sources as well as their

approximate locations. The direction of synaptic flow between these EEG sources is

then estimated using the directed transfer function (DTF), and the significance of

directional coupling strength evaluated with surrogated data. The reliability of this

approach was assessed with simulations manipulating the number of data samples,

the depth and orientation of the equivalent source dipoles, the presence of different

noise sources, and the violation of the non-Gaussianity assumption inherent to the

proposed technique. The simulations showed the superior accuracy of the proposed

approach over other traditional techniques in most tested scenarios. Its validity

was also evaluated analyzing the generation mechanisms of the EEG alpha rhythm

recorded from 20 volunteers under resting conditions. Results suggested that the

major generation mechanism underlying EEG alpha oscillations consists of a strong

bidirectional feedback between thalamus and cuneus. The precuneus also seemed to

actively participate in the generation of the alpha rhythm although it did not exert a

significant causal influence neither on the thalamus nor on the cuneus. All together,

these results suggest that the proposed methodology is a promising non-invasive

approach for studying directional coupling between mutually interconnected neural

populations.
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1 Introduction

The ability of neuronal populations to establish oscillatory synchronization

patterns at local and long-range levels has been potentially regarded as one of

the brain mechanisms underlying cognition (e.g. Uhlhass and Singer, 2006).

But in highly interconnected cerebral systems it is relevant not only to de-

termine neuronal synchronization, but also to identify causal (drive-response)

relationships between the studied subsystems. Analysis techniques based on

Granger causality criteria provide information about which brain region drives

another by measuring how the history of a neural signal predicts the future

of another (Granger, 1969; Baccalá and Sameshima, 2001). A closely related

concept consists in measuring to what extent an spectral component in a neu-

ral signal induces the generation of the same spectral component in another

neural signal (Kamiński and Blinowska, 1991; Eichler, 2006). To date, all these

information-flow measures have been typically computed between scalp EEG

signals recorded in humans (Baccalá and Sameshima, 2001; Kamiński and

Blinowska, 1991; Kús et al., 2004) and from intracranial recordings both in

humans and animals (Franaszczuk and Bergey, 1998; Freiwald, 1999; Kamiński

et al., 2001). More recently, they have started to be applied in brain source

space (Bakardjian et al., 2006; Astolfi et al., 2007b; Supp et al., 2007).

A fundamental problem when studying directional connectivity between brain

areas is that causality relationships between scalp EEG signals do not imply

that the same relationships exist between the underlying neural sources. The
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reason is that scalp EEG potentials do not exclusively reveal averaged post-

synaptic activity from localized cortical regions beneath one electrode but the

superposition of all active coherent neural sources located anywhere in the

brain, due to conduction effects in the brain volume (Malmivuo and Plonsey,

1995). This superposition effect inevitably leads to misinterpretations of the

synchronization results obtained between scalp EEG signals, specially when

subcortical generators are actively involved.

A straightforward solution to these problems consists in computing the co-

herence between equivalent intracranial current dipoles (Hoechstetter et al.,

2004). However, estimating the number, locations and orientations of multiple

discrete neuroelectric dipoles is not a trivial issue due to the high number of

possible model configurations that fit well the spatial patterns of scalp EEG

potentials. A similar approach consists in computing the coherence between

brain regions of interest (Lehmann et al., 2006; Gross et al., 2004; Supp et al.,

2007), although defining the anatomical boundaries of these areas usually in-

volves a great deal of subjectivity and an a priori knowledge about the location

of the neural current generators underlying scalp EEG recordings.

An alternative solution to volume conduction effects is based on blind source

separation (BSS) techniques. Rather than estimating the locations of the

source generators, BSS aims to directly invert the mixing process that the

source signals undertook in the brain tissue. To achieve this separation, these

methods make mild assumptions about the mixing process, namely that the

quasistatic approximation of brain volume conduction is valid (Malmivuo and

Plonsey, 1995), and impose strong requirements on the statistical properties of

the source signals. A prototypical example of BSS techniques is Independent

Component Analysis (ICA), which assumes that the sources are mutually in-
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dependent non-Gaussian random variables (see e.g. Hyvärinen et al., 2001, for

a review). Multiple studies have shown the usefulness of ICA techniques to

remove artifacts (e.g. Jung et al., 2000), to separate physiological sources (e.g.

Makeig et al., 2002) and even to study directional connectivity between cor-

tical areas (Bakardjian et al., 2006; Astolfi et al., 2007a). However, if we aim

at determining causality relationships between different spatiotemporal EEG

sources, we are implicitly assuming that those sources are functionally inter-

related, which violates the assumption of independence made by ICA. Several

methods have been previously proposed to overcome this pitfall (Meinecke

et al., 2005; Nolte et al., 2006), but they are not able to identify directionality,

i.e. asymmetric flows of activity between EEG sources.

In this article we propose a novel analysis methodology to overcome vol-

ume conduction effects when studying directional connectivity between EEG

sources. By carefully combining MVAR modeling and ICA, our approach is

able to unravel the mixing caused by volume conduction and estimate the

original source signals and their corresponding spatial patterns of scalp po-

tentials. Subsequently, these spatial patterns are localized within the brain

volume by the standardized weighted low-resolution brain electromagnetic to-

mography (swLORETA) (Palmero Soler et al., 2007). Finally, we estimate

the direction of synaptic flow between these EEG sources using the directed

transfer function (DTF, Kamiński and Blinowska, 1991) and assess the sig-

nificance of the obtained DTF values using surrogated data. This approach is

conceptually simple, it can be applied to high-density EEG datasets, is able

to identify causal directionality between EEG sources and does not make any

prior assumptions about the locations of the EEG generators. We confirmed

the superior accuracy of the proposed methodology over other approaches by
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means of simulations, and further assessed its validity through the analysis of

the generation mechanisms of the EEG alpha rhythm in 20 volunteer subjects.

2 Materials and methods

2.1 EEG model

The time-varying neural current density responsible for the EEG scalp poten-

tials can be appropriately modeled by a discrete set of K signal generators.

Let us denote by s(t) = [s1(t), ..., sK(t)]T the multivariate activation pattern

of those generators at time instant t. Here, as in the following, T denotes

transposition. Let us also assume that those source activation patterns are

well described by an MVAR model of order p, at least for a certain temporal

range t = 1, ..., L. Then, we have that:

s(t) =
p∑

τ=1

Bs(τ)s(t − τ) + n(t) (1)

where Bs(τ) ∀τ = 1, ..., p are the coefficient matrices of the MVAR model

and n(t) = [n1(t), ..., nK(t)]T represents the corresponding multivariate resid-

ual process. We assume that each EEG generator is a source of independent

activity in the sense that the elements of the residual vector n(t) behave like

mutually independent random variables. Causal relationships between EEG

sources are therefore exclusively produced by time-lagged axonal propagation

of macroscopic neural behavior among distant regions of the brain (modeled

by the coefficient matrices Bs(τ) ∀τ = 1, ..., p).

The DTF and also several Granger-causality measures can be directly com-
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puted from estimates of Bs(τ), as explained in the following section. However,

scalp EEG recordings do not correspond with the multivariate vector s(t) but

with a (noisy) linear mixture of its components. Therefore, the multichannel

EEG recorded at time instant t using M electrodes is a multivariate signal

x(t) satisfying:

x(t) = Φs(t) + η(t) + Φnoiseε(t) (2)

where Φ is an unknown M × K leadfield matrix modeling volume conduc-

tion effects from the location of the sources to the scalp electrodes, η(t) =

[η1(t), ..., ηM(t)]T denotes the additive noise at each electrode (measurement

noise), which is assumed to be white and Gaussian, and the term Φnoiseε(t)

represents the contribution of noisy EEG sources (biological noise). By noisy

sources we refer to EEG sources unrelated to the EEG features under study

(e.g. unrelated to the generation of the EEG-alpha rhythm). We only consider

the case when M ≥ K. Specially for high-density EEG recordings, it is rela-

tively safe to assume that the amount of electrodes is greater than the number

of neural sources contributing to the scalp EEG. Furthermore, for the sake of

simplicity, we neglect the contribution of measurement and biological noise in

the derivations below. By combining Eq. 1 and the noiseless version of Eq. 2,

we obtain that the observed EEG follows the MVAR model:

x(t) =
p∑

τ=1

ΦBs(τ)Φ+︸ ︷︷ ︸
Bx(τ)

x(t − τ) + Φn(t)︸ ︷︷ ︸
v(t)

(3)

where + denotes Moore-Penrose pseudoinversion 1 . Granger causality stud-

1 If M is a real matrix and
(
MTM

)−1 exists then M+ = MT
(
MMT

)−1
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ies applied to human EEG signals have typically used estimates of Bx(τ) to

measure directional flows of macroscopic synaptic activity between scalp EEG

electrodes, with the implicit assumption that causal relationships between elec-

trodes imply functional connectivity between their respective underlying cor-

tical regions. This is equivalent to assuming that Bx(τ) ≈ Bs(τ). Indeed, this

assumption is not valid in general because the MVAR model that best fits the

observed EEG data might be strongly affected by volume conduction effects

(matrix Φ in Eq. 3).

2.2 Analysis procedure: MVAR-EfICA

We propose a novel methodology for measuring directional connectivity that

takes into consideration the effects of volume conduction. In order to achieve

this goal, the source MVAR coefficient matrices Bs(τ) ∀τ = 1, ..., p are es-

timated based on the observed EEG given in Eq. 3. Our approach, called

MVAR-EfICA, is depicted in Fig. 1 and consists of the following steps:

2.2.1 Principal Component Analysis (PCA)

We first apply PCA because previous studies have demonstrated its efficacy in

integrating brain activity spread across EEG leads, reducing the effects of mea-

surement noise and removing second-order instantaneous cross-correlations

caused by volume conduction (see e.g. Richards, 2004). Even more important,

PCA reduces the dimensionality of the data and avoids ill-conditioned covari-

ance matrices, which results in a faster and more robust estimation of the

MVAR model in the next analysis step.
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PCA linearly transforms the scalp EEG signals x(t) into a set of K mutu-

ally uncorrelated principal components. From Eq. 3 follows that the PCA-

transformed data is also an MVAR process:

xPCA(t) =
p∑

τ=1

CΦBs(τ) (CΦ)−1︸ ︷︷ ︸
BPCA(τ)

xPCA(t − τ) + CΦn(t)︸ ︷︷ ︸
r(t)

(4)

where C is a K×M matrix implementing the PCA transformation. We suggest

using as many principal components as necessary to reconstruct most (e.g.

99%) of the variance contained in the EEG signals.

2.2.2 Multivariate Autoregressive (MVAR) modeling

Time-delayed cross-dependencies between the estimated principal components

cannot be explained by instantaneous volume conduction in the brain tissue

and, therefore, are likely to be of neural origin, i.e. caused by time-delayed

axonal propagation of electrical activity between brain generators. To disclose

the dynamical characteristics of these time-delayed covariances, an MVAR

model is fitted to xPCA(t) using the algorithm ARfit (Schneider and Neu-

maier, 2001). ARfit is suitable for the analysis of high-dimensional datasets

and, for relatively large samples sizes, similarly accurate to other MVAR es-

timation algorithms (Schlögl, 2006). We denote by B̂PCA(τ) ∀τ = 1, ..., p the

estimated model coefficients. The model order is automatically selected using

Swartz’s Bayesian Criterion (SBC) (Schwarz, 1978). Traditionally, it is deter-

mined by locating the minimum of the SBC as a function of model order (p

values varied between 2-30 in the present study). Instead, we select the or-

der that guarantees that greater model orders do not significantly reduce the

SBC, i.e. the order for which the reduction in the SBC has reached 90% of
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the maximum reduction achievable within the tested range of model orders.

This modification is motivated by the fact that, for our EEG data, both SBC

and Akaike’s information criterion (Akaike, 1971) dropped monotonically with

increasing model order, which is in close correspondence with previous EEG

studies (Brovelli et al., 2004; Supp et al., 2007).

2.2.3 Independent Component Analysis (ICA)

The instantaneous (without delay) higher-order cross-dependencies remain-

ing in the residuals of the MVAR model that were estimated in the previ-

ous step are likely to be of non-neural origin, i.e. caused by volume conduc-

tion effects 2 . Based on this assumption, we use ICA to estimate a K × K

matrix Ŵ ≈ (CΦ)−1 that minimizes the mutual dependencies between the

components of the multivariate residual process r(t) previously obtained 3 .

Specifically, we use the algorithm EfICA (Koldovský et al., 2006), which is

an asymptotically optimal variant of the popular algorithm FastICA (Hyväri-

nen, 1999). The idea of applying ICA to the residuals of a linear predictor

has been proposed elsewhere (Hyvärinen, 2001; Särelä and Vigário, 2003), al-

though in an univariate context. A combination of MVAR modeling and ICA

was previously proposed in the field of audio signal processing (Cheung and

Xu, 2003).

2 Assuming that there are not instantaneous (without delay) flows of activity be-

tween brain generators. This is a plausible assumption since instantaneous flows

between brain EEG sources located more than few mm apart are unlikely due to

axonal propagations delays (Freeman, 2000).
3 Note that the permutation and sign indeterminacy of ICA becomes irrelevant

once the brain sources are localized in section 2.2.5
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2.2.4 DTF computation between EEG sources

We use Ŵ ≈ (CΦ)−1 and Eq. 4 to estimate the MVAR parameters of the

underlying EEG sources: B̂s(τ) = ŴB̂PCA(τ)Ŵ−1 ≈ Bs(τ). Then, the spa-

tiotemporal spectral properties of the EEG sources can be uncovered by trans-

forming Eq. 1 to the frequency domain:

S(f) =

(
I−

p∑
τ=1

Bs(τ)e−j2πτ f
fs

)−1

︸ ︷︷ ︸
H(f)

·N(f) (5)

where N(f) is the Fourier transform of the residual process n(t), fs is the

sampling frequency and I denotes the identity matrix. The transfer matrix

H(f) describes transfer of spectral properties (coherent links) between EEG

sources.

The DTF (Kamiński and Blinowska, 1991) from the jth EEG source to the

ith source at certain frequency f is denoted by γij(f) and is defined as the

ratio of influence of sj(t) on si(t), with respect to the combined influence

of s1(t), ..., sK(t) on si(t). The DTF can be compactly expressed in terms of

elements of the transfer matrix H(f) as:

γij(f) =
|Hij(f)|2∑K

m=1 |Him(f)|2
(6)

DTF values are in the interval [0, 1]. The DTF can also be defined for a band

of frequencies, e.g. for the alpha-rhythm frequency band (7.5 − 12.5 Hz) by

integrating the DTF across alpha frequencies: γij(7.5 Hz < f < 12.5 Hz) =∫ 12.5 Hz
7.5 Hz γij(f)df .
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Although the DTF is a good indicator of the total spectral influence from one

electromagnetic source to another, it is noteworthy mentioning that knowledge

of the MVAR model underlying the source signals is all we need to compute

other alternative measures of information flow in the frequency domain. An

example of such measures is the partial directed coherence (PDC) (Baccalá

and Sameshima, 2001) which, contrary to the DTF, allows differentiating be-

tween direct and indirect flows between EEG sources. Both DTF and PDC

have somewhat complementary advantages and limitations (Kús et al., 2004;

Eichler, 2006). Probably, the best approach would be to compute several such

complementary measures simultaneously (Eichler, 2006), which is a topic of

further research. The DTF was chosen here only for illustration purposes, al-

though any other MVAR-based information flow measure could be used in

combination with the proposed MVAR-EfICA methodology.

2.2.5 Intracranial localization of EEG sources

We estimate the leadfield matrix as Φ̂ =
(
ŴC

)+
≈ Φ. Each of the K columns

of the estimated leadfield matrix Φ̂ determines the brain location where each

source signal is generated. Practically any inverse method in the literature

could be used to estimate the location of these EEG sources. Given that the

generation of human alpha rhythm involves cortical (surface) and thalamic

(deep) sources, we applied the swLORETA method, which has shown a bet-

ter performance when compared with other similar techniques under realistic

noisy conditions and for the reconstruction of deep EEG sources (Palmero Soler

et al., 2007). In the present study we employed a realistic head model of three

layers (scalp, skull and brain with conductivities of 0.33, 0.0042, and 0.33,

respectively) created using the boundary element method. Source reconstruc-
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tion solutions were projected onto the 3D MR images of the Collin’s brain

provided by the Montreal Neurological Institute. Probabilities of source ac-

tivation based on Fisher’s F-test were obtained for each independent EEG

source.

2.3 Alternative approaches to MVAR-EfICA

Previous studies of directional connectivity have commonly assumed that

causality relationships between scalp EEG signals are equivalent to functional

connectivity between the cortical regions underlying the corresponding EEG

electrodes, completely disregarding volume conduction effects (Bernasconi and

König, 1999; Baccalá and Sameshima, 2001; Kamiński et al., 2001; Kús et al.,

2004). If the locations of the EEG sources are known a priori, a conceptually

equivalent approach consists in fitting an MVAR model only to the signals

recorded from the electrodes closest to the underlying EEG sources. We re-

fer to this traditional methodology as the low-dimensional MVAR approach.

Actually, low-dimensional MVAR can be regarded as an upper bound for the

performance of traditional DTF estimators since the locations of the underly-

ing neuroelectrical sources are typically unknown when dealing with real scalp

EEG data.

Astolfi et al., (2007b) used ThinICA to remove volume conduction effects

before estimating the PDC. The DTF and the PDC are both based on MVAR

modeling and therefore, the same approach can be directly extrapolated to the

estimation of the DTF. The approach of Astolfi and colleagues differs from ours

in two important facts. First, it applies ThinICA on the principal components

directly, rather than on the residuals of the MVAR model best fitting the
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principal components. Second, ThinICA is not a traditional ICA algorithm,

at least according to the classical definition of ICA. Thus, ThinICA does not

require that the sources are approximately non-Gaussian random variables but

they are also allowed to be Gaussian processes with temporal structure and

zero time-lagged cross-correlations. As will be shown later through simulations,

the presence of time-delayed cross-correlations between EEG sources has an

important negative effect on the accuracy of ThinICA and, therefore, on the

estimation of the DTF. In the simulations we will refer to this method simply

as ThinICA-MVAR. Since Astolfi et al., (2007b) did not specify the number of

time-delayed covariance matrices used by ThinICA, we tested two possibilities:

ThinICA1-MVAR, which uses only a single covariance matrix for time-lag 0

and ThinICA5-MVAR, which uses covariances for time-lags 0, 1, 2, 3, 4.

2.4 Simulations

The proposed methodology was evaluated by studying the effects of the follow-

ing simulation parameters: L (number of scalp EEG data samples), d (depth of

the source dipoles, using the head radius as reference unit), δ (orientation an-

gle of the source dipoles, in degrees), SNR (signal-to-measurement-noise ratio,

in dBs), SBNR (signal-to-biological noise ratio, in dBs) and α (Gaussianity

of the residuals). Each tested set of values for those parameters resulted in a

simulation instance. In order to assess average performance, each simulation

instance was repeated 200 times with random spatial and temporal character-

istics of the noise. In addition, any parameter that was not under evaluation

during certain simulation instance was either fixed to some favorable values

(L = 38400, SNR = 15 dB, SBNR = 15 dB) or varied randomly within
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certain plausible ranges (0.2 ≤ d ≤ 0.8, 0◦ ≤ δ ≤ 90◦, 1 ≤ α ≤ 3). This simu-

lation set-up allowed us to assess the average effects of each tested parameter

for an arbitrary combination of the remaining parameters.

We used a one-shell spherical head of normalized radius (r = 1). Inside

this simulated head we located four source dipoles �qj(t) = sj(t) · �ej ∀j =

1, 2, 3, 4 ∀t = 1, ..., L with orientations �ej = [ej,x, ej,y, ej,z]
T and time-varying

activations sj(t) following an MVAR model as in Eq. 1. Both the residuals and

the coefficients of the MVAR model (the coupling strengths between sources)

were random in each simulation surrogate, with the only requirement that the

resulting MVAR model had to be stable. In order to assess the amount of data

needed by different techniques to reach their asymptotic performance, we ran

simulations using 1280 < L < 38400 samples. Fig. 2 (left panel) and Fig. 3

show the positions of the simulated electrodes (M = 16) and the positions

and orientations of the simulated source dipoles (K = 4). As shown in Fig. 3,

the spatial characteristics of the source dipoles could be varied using two pa-

rameters: the distance to the scalp (d) and the angle that they formed with

their radial component (δ). The rotation angles of the dipoles around their

radial components also affected the performance of the different methods but

the effect of the angle δ was much more pronounced. Because of this, only δ

was used to vary the orientation of the dipoles and the rotation angles of the

dipoles were random in each simulation surrogate.

The residual processes driving the source dipoles, denoted by n1(t), ..., n4(t) in

Eq. 1, followed a generalized Gaussian distribution with probability density

function (pdf): p(ni) ∝ e−Γ|ni|α . By varying α between 1 and 3 we varied

the Gaussianity of the residuals. If α < 2, they showed a super-Gaussian

distribution (acute peak around the mean and ”fat” tails). If α = 2 they were
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exactly Gaussian, and if α > 2 they were sub-Gaussian (smaller peak around

the mean and ”thin” tails).

The signal-to-measurement-noise ratio (SNR) and the signal-to-biological-

noise ratio (SBNR) were defined as the mean standard deviation of the signal

across EEG channels, divided by the standard deviation of the Gaussian ther-

mal noise introduced by the EEG sensors (measurement noise) and by the

mean standard deviation of the biological noise across EEG channels, respec-

tively. The biological noise was simulated using four noisy dipoles which were

randomly located in each simulation surrogate within the volume depicted

in Fig. 2 (right panel). The orientations of the noisy dipoles also varied ran-

domly across simulation surrogates and their individual temporal activations

were obtained with an autoregressive (AR) model of order 5 driven by white

Gaussian residuals. Both the residuals and the coefficients of these AR models

were randomized in each simulation surrogate.

The MATLAB R© code necessary to perform the simulations above is freely

available in the Internet (Gómez-Herrero, 2008).

2.5 Assessing the accuracy of DTF estimates obtained by different methods

The estimation accuracy for the source DTF between the ith and jth dipole at

frequency f was measured using the following index (in percentage):

ε = 100 · 1

K2N

∑
ijf

√
(γij(f) − γ̂ij(f))2 (7)

where γij(f) denotes the true DTF between the ith and jth simulated dipoles
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(obtained from the true MVAR coefficients in Eq. 1), γ̂ij(f) designates the

DTF estimation obtained with any of the tested methods, K is the total num-

ber of source dipoles (in our case, K = 4) and N is the number of frequency

bins employed in the DTF analysis (in our simulations, N = 10 uniformly

distributed bins). Since the DTF at a certain frequency is within the range

[0 1], ε ranges from 0% (best case, no estimation error) to 100% (worst case,

maximum possible estimation error).

As was said in the previous section, each simulation instance (corresponding

to certain set of values of the simulation parameters) was repeated 200 times.

The results obtained from these simulation surrogates were summarized by

means of two indexes:

(1) The mean DTF estimation error, defined as ε̄ = 1
200

∑200
1 εi, where εi is

the DTF error obtained in the ith simulation surrogate. Clearly, ε̄ varies

between 0% (perfect DTF estimation in every surrogate) and 100% (worst

possible estimation in every surrogate).

(2) The p-value of the paired t-test for the null hypothesis ε̄0 < ε̄, where

ε̄0 is the mean DTF estimation error obtained with the traditional low-

dimensional MVAR methodology and ε̄ is the mean DTF error for an

alternative method. We denoted this performance index by ε̄p-val. This

index evaluates the probability (p-value) that the traditional approach

performs better than MVAR-EfICA and/or ThinICA-MVAR in a random

simulation surrogate. Therefore, the lower the value of ε̄p-val the more

significant the improvement obtained with any of the tested methods

with respect to the traditional approach.
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2.6 Testing MVAR-EfICA with real EEG data

EEG recordings were obtained from 20 cognitively normal volunteers (10 fe-

males, mean age: 68.4± 6.1 yr) recruited from the local community. Inclusion

criteria for this study were (i) no cognitive dysfunctions corroborated by neu-

ropsychological exploration, (ii) clinical dementia rating global score of 0 (no

dementia), and (iii) normal independent function both judged clinically and

by means of a standardized scale for the activities of daily living. None of them

had a history of neurological, psychiatric disorders and/or major medical ill-

ness.

EEG recordings were obtained between 9-10 AM in all participants in a relaxed

wakefulness state with eyes closed. Vigilance level was constantly controlled.

EEG was continuously acquired and referenced to linked mastoids from 59

scalp locations according to the International 10-20 system. Vertical ocular

movements were recorded with a pair of electrodes placed above and below

the left eye. The horizontal electrooculogram was acquired with another pair

1 cm apart from the outer canthus of each eye. Electrophysiological measure-

ments were recorded with 10 mm diameter gold disk electrodes (Grass, Inc.).

Electrode-scalp impedance was always kept below 5 KΩ. All electrophysi-

ological variables were amplified (BrainAmp MR, Brain Vision R©), filtered

(0.1 − 100 Hz bandpass), digitized (250 Hz, 16-bit resolution), and stored in

digital format for off-line analysis.

EEG epochs containing prominent ocular, muscular and/or any other type

of artifacts were manually identified and eliminated by an experimented re-

searcher (JLC) with expertise in human neurophysiology. Residual ocular ar-
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tifacts present in the remaining EEG epochs were corrected by adaptively

regressing out the signals recorded at the peri-ocular electrodes (He et al.,

2004). A total of 150 s (37500 samples) of artifact-free EEG containing alpha

rhythm were then available for each participant. The selected epochs were fil-

tered within 6 − 13 Hz using a real and phase linear passband filter of order

100. The average DTF for alpha-EEG frequencies was obtained as the average

of the DTF values obtained in 10 equally spaced frequency bins within the

alpha band (7.5 Hz - 12.5 Hz).

2.7 Finding reliable results with real EEG data

In the analysis of real EEG data, we used ICASSO (Himberg et al., 2004;

Himberg and Hyvärinen, 2005) to assess the significance of the ICA estimates

obtained in the MVAR-EfICA procedure. EfICA, FastICA and most ICA al-

gorithms involve stochastic optimization, which raises concerns about the re-

peatability and reliability of the analysis when analyzing real data (Särelä

and Vigário, 2003; Himberg et al., 2004). ICASSO overcomes these concerns

by identifying clusters of ICA estimates that are consistently found across

random initializations of the ICA algorithm and across random bootstrap sur-

rogates of the input data.

We introduced three modifications in the standard ICASSO procedure orig-

inally proposed by (Himberg et al., 2004). First, we used EfICA as ICA al-

gorithm instead of FastICA, which was motivated by the better performance

of the former reported by (Koldovský et al., 2006). Second, ICA estimates

were clustered according to the cross-correlation coefficients between their cor-

responding spatial patterns of scalp potentials. Third, we clustered together
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ICA estimates obtained from all available subjects. This latter modification al-

lowed the detection of stable clusters of spatial components across the group of

studied subjects. ICASSO was set-up to run EfICA 75 times on each subject’s

EEG with random initial conditions and with random bootstrap re-sampling.

We used ICASSO’s default agglomerative clustering with average-linkage cri-

terion. The number of clusters in the data was automatically selected with

the R-index (Himberg et al., 2004). Each cluster was uniquely represented

by a single centrotype ICA-estimate, which is just the estimate in the cluster

that has the maximum sum of similarities to other points in the cluster. Only

centrotypes of significant clusters were considered as valid ICA-estimates. A

cluster was significant if it contained ICA-estimates from at least 50% of the

subjects (high inter-subject repeatability) and from at least 50% of the ICA-

runs corresponding to those subjects (high intra-subject reliability).

Since the significant centrotype ICA-estimates might have been obtained from

different subjects and/or different ICA runs, we had to redefine the computa-

tion of the DTF between EEG sources and we had to find a unique approxi-

mation of the leadfield matrix for the whole population of subjects. This was

done by noting that the 1-dimensional temporal activation of the ith centrotype

EEG source, denoted by s∗i (t), can be retrieved from the EEG measurements

of the corresponding subject by:

s∗i (t) = v∗
i x(i)(t) ∀i = 1, ..., K (8)

where v∗
i is a spatial filter (a row vector of scalar coefficients) and x(i)(t) de-

notes the column vector containing the EEG measurements at the time instant

t for the subject from which the ith centrotype ICA-estimate was obtained.

The temporal course of the ith centrotype ICA-estimate can be projected from
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brain space back to the scalp EEG sites by:

x∗i
(i)(t) = φ∗

i s
∗
i (t) ∀i = 1, ..., K (9)

where φ∗
i is a column vector of scalar coefficients defining the pattern of scalp

potentials generated by the ith centrotype EEG source. Therefore, the in-

tracranial localization of the ith centrotype EEG source is fully character-

ized by φ∗
i whereas the spatial filter v∗

i can be used to retrieve its temporal

dynamics from the EEG measurements. If we assume that the number of

active EEG sources and their localizations do not vary considerably across

subjects we can define a common approximation of the leadfield matrix for

the whole population: Φ̂ ≈ [φ∗
1, ..., φ

∗
K ]. This whole-population leadfield ma-

trix can be used to estimate the intracranial localization of each EEG source

with swLORETA. Additionally, the temporal dynamics of the centrotype EEG

sources can be obtained for an arbitrary subject by means of spatial filtering:

si(t) = v∗
i x(t) ; ∀i = 1, ..., K, where x(t) is the column vector of EEG mea-

surements. Once we have obtained the time courses of the EEG sources, we

estimate the coefficients of the MVAR model that best fit their mutual dynam-

ics and compute the DTF. Lilliefors’ test was used to test the null hypothesis

that the time courses of the residuals of the EEG sources were normally dis-

tributed.

Since the distribution of DTF estimates obtained from an MVAR model is not

well established (Kamiński et al., 2001; Kús et al., 2004), we used bootstrap

surrogates to determine whether the obtained DTF estimates were statistically

significant (Kamiński et al., 2001). As was said before, the DTF measures

the ratio between the outflow from the EEG source j to the EEG source
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i, in respect to all the inflows to the destination EEG source. Therefore, if

γij(f) > γik(f) ∀k 	= {i, j} then we can infer that the ith EEG source is mainly

driven by the jth EEG source. However, for these inferences to be valid we need

to define statistical tests able to reject the null hypothesis that γij(f) ≤ γik(f)

for some k 	= {i, j}. Approaching this task analytically is complex due to (i)

the highly non-linear relationship between data samples and DTF estimates

and (ii) the interdependence between DTF values that were obtained from the

same subject at the same frequency. Thus, we employed a numerical approach

consisting of the following steps:

(1) After the MVAR-EfICA analysis, we have estimates of all the unknowns in

Eq. 1, that is the order and the parameters of the MVAR model that best

fit the centrotype EEG sources: B̂s(τ) ≈ Bs(τ) ∀τ = 1, ..., p and n̂(t) ≈

n(t) ∀t = 1, ..., L. By randomly shuffling time instants (columns) of the

estimated multivariate residual process n̂(t) we generated J surrogates of

the EEG sources:

s(m)(t) =
p∑

τ=1

B̂s(τ)s(m)(t − τ) + n̂(m)(t) ∀m = 1, ..., J (10)

where (m) indexes the surrogates.

(2) We re-estimated the coefficients of the MVAR model for each surrogate:

B̂(m)
s (τ) ; ∀τ = 1, ..., p ; ∀m = 1, ..., J .

(3) Using B̂(m)
s , we re-estimated the DTF in the alpha band for each surro-

gate: γ
(m)
ij ; ∀m = 1, ..., J .

(4) For each EEG source, we computed the differences between inflows of

different origin:

Δγ
(m)
ij,ik = γ

(m)
ij − γ

(m)
ik ; ∀i ; ∀k 	= {i, j} (11)
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(5) We computed the maximum and minimum inflow differences:

ΔγMIN
ij,ik = minm

(
Δγ

(m)
ij,ik

)
; ∀i ; ∀k 	= {i, j}

ΔγMAX
ij,ik = maxm

(
Δγ

(m)
ij,ik

)
; ∀i ; ∀k 	= {i, j}

(12)

Only if both ΔγMIN
ij,ik and ΔγMAX

ij,ik were positive we were confident that, for

the ith EEG source, the inflow from the jth source was larger than the inflow

from the kth source since this was true for every surrogate.

3 Results

3.1 Simulations

Fig. 4 shows that MVAR-EfICA was reliable even for small data lengths, out-

performing the traditional low-dimensional MVAR even with as few as 6400

data samples (εp−val < 0.001). The poor performance of ThinICA-MVAR was

caused by the presence of time-delayed MVAR covariances between the source

signals, in violation of the assumptions made by ThinICA-MVAR. This ex-

planation is supported by the fact that including more time-lagged covariance

matrices did not improve the asymptotic performance of ThinICA-MVAR but

made it worse.

A major pitfall of the traditional low-dimensional MVAR approach is its

sensitivity to volume conduction effects. In particular, the accuracy of low-

dimensional MVAR was seriously compromised even for very shallow cortical

dipoles, if they were tangential to the scalp surface. By contrary, MVAR-

EfICA was considerably more robust to the presence of non-radially oriented
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dipoles. Fig. 5 shows that the improvement of MVAR-EfICA with respect to

the traditional low-dimensional MVAR approach was significant for most of

the possible depths and orientations of the source dipoles.

Fig. 6 shows that the proposed MVAR-EfICA methodology was largely undis-

turbed by the presence of measurement noise and it performed significantly

better than the traditional low-dimensional MVAR approach for low levels of

biological noise.

MVAR-EfICA was quite robust to mild violations of the assumption of non-

Gaussian residuals (Fig. 7). ThinICA-MVAR was much more affected by the

distribution of the MVAR residuals and performed significantly better than

the traditional approach only when they exhibited a highly super-Gaussian

distribution (α < 0.001; see Fig. 7).

3.2 Real EEG data

Fig. 8 depicts the results of the ICASSO analysis applied to alpha EEG record-

ings from 20 healthy elderly subjects. The R-index suggested an optimal parti-

tion of 12 clusters in the data. Clusters 10, 11 and 12 were the only significant

ones and contained 1125, 1050 and 825 ICA-estimates, respectively (out of

a total of 4425 estimates). Those three clusters exhibited a high repeatabil-

ity within the same subject and across subjects. In particular, ICA-estimates

within cluster 10 were obtained from 15 different subjects while 14 and 11

subjects contributed to clusters 11 and 12, respectively. All remaining clusters

were much smaller and had high cross-similarities with one or more of the

three major clusters. Clusters 10, 11 and 12 were selected for further analy-
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sis since they conveyed the most replicable and stable features of EEG-alpha

rhythm.

The normalized scalp topographies corresponding to the representative cen-

trotypes of clusters 10, 11 and 12 are shown in Fig. 8 (right panel). The single

electrical dipoles most likely to be generating each of those topographies were

located in caudal regions of the thalamus (cluster 10, x = 9, y = −25, z = 9),

in the precuneus (cluster 11, x = 2, y = −60, z = 28), and in the middle

occipital gyrus, within the limits of the cuneus (cluster 12, x = 11, y = −97,

z = 13). The corresponding localization probability maps are shown in Fig. 9.

Lillieford’s test rejected the Gaussianity hypothesis for the centrotype ICA-

estimates of clusters 10, 11 and 12 (p < 0.01).

Fig. 10 summarizes the results regarding directed flows between the alpha

generators in the pre-cuneus (P), the cuneus (C) and the thalamus (T). There

was a clear bidirectional link between the generation of EEG-alpha in the

thalamus and the precuneus. EEG-alpha oscillations originated in the thala-

mus were mainly driven by EEG-alpha generated in the cuneus in 12 subjects

(p < 0.01). By contrary, the thalamic source was mainly driven by EEG-alpha

generation in the pre-cuneus only in 1 subject (p < 0.01). Similarly, the tha-

lamic source had a main effect on the generation of EEG-alpha in the cuneus

in 12 of the subjects (p < 0.01) whereas the hypothesis that the inflow to the

cuneus was larger from the precuneus than from the thalamus did not reach

significance (p > 0.01) in any of the subjects. Moreover, the participation

of the precuneus in the EEG alpha generation did not exert a major effect

on either the thalamus or the cuneus, which rules out the possibility that the

bidirectional flow between thalamus and cuneus might be due to indirect flows

through the precuneus. Only in 1 subject the flow of EEG-alpha activity from
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pre-cuneus to thalamus was significantly larger (p < 0.01) than the flow from

the cuneus to the thalamus. Overall, the precuneus seemed to behave like

a sink of EEG-alpha activity generated in the thalamus and/or the cuneus,

whereas the major mechanism regulating EEG-alpha generation was a strong

bidirectional causal feedback between thalamus and cuneus. The origin of the

EEG-alpha activity inflow to the precuneus is uncertain because the strong

bidirectional link between thalamus and cuneus does not allow us to discard

the possibility that the flow from thalamus to precuneus (from cuneus to pre-

cuneus) is actually caused by an indirect flow through the cuneus (thalamus).

This issue could be clarified by incorporating additional information-flow mea-

sures like the PDC, which is a topic that we are currently investigating.

4 Discussion

In this study we have presented a robust methodology for estimating direc-

tional flows of activity between EEG sources. The major features of the pro-

posed MVAR-EfICA approach are that (i) it removes spurious flows between

scalp EEG signals due to volume conduction effects and (ii) it does not make

any a-priori assumptions about the intracranial localization of the underlying

EEG generators.

An advantage of the proposed methodology is that each column of the esti-

mated leadfield matrix Φ̂ determines the localization of a single generator. It

has been previously reported that, by localizing each independent source of

activity separately, the localization error can be significantly reduced (Tang

et al., 2002). In this context, we have to admit that, although the conductivity

values of scalp, skull and brain used in this study can be considered as a de-
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facto standard in head modeling, they might be far from realistic (Gonçalves

et al., 2003), suggesting the necessity of measuring them in vivo for each sub-

ject in order to decrease errors associated with the EEG source locations.

Moreover, for the estimated leadfield matrix to be a valid approximation of

the true leadfield matrix the assumptions of the model need to be fulfilled,

mainly that the residuals in Eq. 3 are mutually independent and that the

number of EEG sensors is greater than the number of relevant EEG sources.

The poor performance of ThinICA-MVAR is mainly explained by the fact

that high-order ICA contrasts are very disturbed by the presence of time-

lagged correlations between the sources, which violate the ICA assumption

that the sources lack any kind of temporal structure. MVAR-EfICA over-

comes this problem by applying ICA on the residuals of the MVAR model,

which are (ideally) free of any temporal structure and still contain the same

instantaneous spatial dependencies of the original sources.

Only few source space studies have attempted to provide a global pattern of

directional connectivity across a population of subjects (Astolfi et al., 2007a;

Supp et al., 2007). In the present study, ICASSO effectively integrated the

information obtained from several subjects and provided a concise and simple

description of the whole population. This comes at the cost of requiring that

the number of active EEG sources and their intracranial localizations are simi-

lar across subjects. In the sight of the results, this seemed to be the case of the

alpha-EEG datasets used here. However, this assumption might not hold for

more complex EEG patterns and/or more heterogeneous populations, which

is a topic for further research.

The proposed MVAR-EfICA analysis methodology requires that there are not
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instantaneous flows of activity between brain generators and that the instanta-

neous innovation processes driving each generator are non-Gaussian. Instanta-

neous synaptic flows between neuronal populations located more than few mm

apart are unlikely due to axonal propagation delays (Freeman, 2000). Although

there is no fundamental reason to believe that the innovation process is non-

Gaussian, several previous studies have also found meaningful non-Gaussian

sources of brain activity (e.g. Makeig et al., 2002; Huang et al., 2007; As-

tolfi et al., 2007a), suggesting the existence of non-Gaussian generators in the

brain.

The most crucial step in the MVAR-EfICA procedure is the MVAR modeling

step. If the MVAR model does not provide an accurate representation of the

sources or if the model coefficients are not accurately estimated MVAR-EfICA

will probably fail to reveal the underlying connectivity pattern. This is also

true for all connectivity studies that use MVAR modeling. Yet, we have to

recognize that our technique might be specially disturbed by inaccuracies of

the MVAR model because of the sensitivity of ICA to the presence of corre-

lations in the residuals of the MVAR model. We are currently investigating

the possibility of improving the decorrelation of the model residuals by re-

placing the MVAR model with the more general multivariate autoregressive

moving-average model.

Brain oscillations in the range of alpha activity are one of the fundamental

electrophysiological phenomena of the human EEG. This brain activity can

be easily identified by its topographic distribution (maximum amplitude over

parieto-occipital regions), frequency range (8− 13 Hz), and reactivity (it suf-

fers a dramatic amplitude attenuation with the opening of the eyes (IFSECN,

1974). The study of alpha oscillations has generated a vast amount of literature
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related with physiological, maturational, clinical, and cognitive aspects (Schur-

mann and Başar, 2001; Pfurtscheller et al., 1996; Niedermeyer and Lopes da

Silva, 1993).

Highly coherent alpha oscillations with significant phase shifts have been ob-

served in both the visual cortex and the lateral geniculate nucleus in non-

human mammals (Chatila et al., 1993; Lopes da Silva et al., 1973, 1980),

supporting the involvement role of thalamo-cortical circuits in the generation

of waking-alpha rhythm. Neocortical neurons located in the layer V of the oc-

cipital cortex seem to be intrinsic alpha generators, as revealed by results from

in vitro preparations (Silva et al., 1991) and in vivo recordings (Lopes da Silva

and Storm van Leeuwen, 1977). They may receive thalamic inputs in order to

maintain activation of cortical columns at an optimal level depending on the

brain activation state. The number and exact location of alpha generators

remain, however, unclear.

From the analysis of the EEG alpha rhythm recorded from 20 volunteers un-

der resting conditions, we found that the bidirectional feedback between tha-

lamus and cuneus was crucial in the EEG alpha generation. The precuneus

seemed to play a secondary (or independent) role and was not the source of

any causal inflow neither to the thalamus nor to the cuneus. This finding is

consistent with (Schreckberger et al., 2004) reporting a positive correlation

between EEG alpha power and metabolism of the lateral thalamus as well

as occipital cortex (cuneus) and adjacent parts of the parietal cortex (pre-

cuneus) in humans. Our results also revealed that thalamocortical synaptic

transmission remained alike from thalamus to cortex and vice-versa, which

is in agreement with neural simulations showing that bidirectional coupling

between distant brain areas engenders strong oscillatory activity (David and
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Friston, 2003). These findings, together with results from human studies em-

ploying 3D equivalent dipole modeling (Isaichev et al., 2001; Başar et al., 1997;

Schurmann et al., 2000), support the notion that complex interactions between

local and non-local EEG sources, instead of a single or multiple isolated neural

generators, are responsible for the genesis of the human alpha rhythm (Nunez

et al., 2003).

In conclusion, we presented a novel methodology for measuring directed (causal)

flows of activity between brain areas using the EEG. The proposed approach

is based on well-established techniques such as MVAR modeling, ICA, cluster-

ing and swLORETA. Simulated experiments showed improved robustness and

accuracy with respect to more traditional approaches. We further evaluated

the validity of our method using EEG recordings of alpha waves from a set

of 20 control subjects. The proposed technique estimated brain locations and

causal flows of brain activity in agreement with the most recent findings about

the generation mechanisms of the alpha rhythm in humans.
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Fig. 1. Block diagram of the proposed MVAR-EfICA methodology. The PCA and

ICA blocks model instantaneous cross-dependencies between scalp EEG signals,

which are exclusively caused by volume conduction (matrix Φ in the diagram). The

PCA block takes care of second order correlations whereas the ICA block models

dependencies of greater orders. By contrary, the MVAR block models time-lagged

covariances between scalp EEG signals (matrices Bx(τ) in the diagram), which are

partially caused by time-lagged flows of activity between EEG sources (matrices

Bs(τ) in the diagram). By combining the PCA, MVAR and ICA models it is possible

to obtain an estimate of the leadfield matrix and of the coefficients of the MVAR

model driving the EEG sources. From the leadfield matrix, swLORETA obtains

the probable intracraneal localization of the EEG sources. From the coefficients of

the source MVAR model it is straightforward to compute the DTF. The dashed

rectangle identifies the blocks that are modified when ICASSO is introduced.
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Fig. 2. (Left) Location of the electrodes in the simulated head with normalized

radius r = 1. The black-filled circles illustrate the positions of the electrodes. The

position of the corner electrodes �E1, �E4, �E13, �E16 were fixed. The other electrodes

were placed uniformly in θ and β in such a way that the angular differences between

two neighboring electrodes were Δθ = Δβ = 70o/3. (Right) Possible locations of

the noisy dipoles. The valid locations (in grey) were within the volume generated

by the intersection of the head sphere with a cone whose vertex is located in the

center of the head and whose lateral surface contains the four corner electrodes

�E1, �E4, �E13, �E16. Additionally, the noisy dipoles were required to be located at a

minimum distance of 0.2 from the scalp and at the same minimum distance from

the center of the head.
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Fig. 3. Anterior frontal view of the simulated head with the positions of the two

frontal source dipoles (�Q2, �Q4) marked with filled black dots and with the position of

the two frontal corner electrodes (�E4, �E16) marked with empty circles. The source

dipoles were located in the radii that connected the center of the head with the

corner electrodes. The distance d between the dipoles and the scalp was a free

parameter of the simulations and its value was normalized according to the head

radius (r = 1). The dipoles orientation vectors �e2, �e4 formed an angle δ with their

corresponding location vectors �Q2, �Q4. Their rotation angle around their radial

component was random in each simulation surrogate. If δ = 0◦ the dipoles were

radial whereas if δ = 90◦ they were tangential to the scalp surface. The positions

and orientations of dipoles 1 and 3 were exactly symmetrical to those of dipoles 2

and 4 in respect of the midline coronal plane.
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Fig. 4. (Left) Mean DTF estimation error for the low-dimensional MVAR approach,

the two variants of ThinICA-MVAR and MVAR-EfICA versus the number of simu-

lated data samples. (Right) Probability (p-value) that the low-dimensional MVAR

method performed better (achieved a lower mean DTF error) than MVAR-EfICA

and/or ThinICA-MVAR in a random simulation surrogate.
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Fig. 5. Volume conduction effects.(Left) The color scale shows the value of the dif-

ference ε̄0− ε̄MV AR−EfICA, where ε̄0 denotes the mean DTF error obtained with the

traditional low-dimensional MVAR approach and ε̄MV AR−EfICA denotes the error

of the proposed MVAR-EfICA approach. Indeed, the more positive this value the

greater the average improvement obtained with MVAR-EfICA.(Right) Probability

(p-value) that low-dimensional MVAR is more accurate than MVAR-EfICA, i.e. the

probability of the event ε̄0 < ε̄MV AR−EfICA. The smaller this value is the greater

the significance of the improvement obtained with MVAR-EfICA
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Fig. 6. Effects of Gaussian thermal noise at the EEG sensors (SNR) and biological

noise (SBNR).The interpretation of this figure is analogous to that of Fig. 5.
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Fig. 7. (Left) Effects of the Gaussianity of the MVAR model residuals on the aver-

age DTF error. (Right) Probability (p-value) that the traditional low-dimensional

MVAR approach ourperforms the alternative techniques.
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Fig. 8. (Left panel) Dendrogram illustrating the arrangement in 12 clusters (as sug-

gested by the R-index) of the ICA-estimates obtained with ICASSO. The horizontal

axis represents the dissimilarity values at which clusters are merged at each possible

partition level. The vertical axis indexes ICA-estimates. (Middle panel) Similarity

matrix. The color scale indicates the cross-correlation coefficient between the scalp

topographies of individual ICA-estimates. Clusters of ICA-estimates are indicated

with red lines and their correponding labels are depicted in the left vertical axis.

(Right panel) Normalized distributions of scalp potentials corresponding to the cen-

trotypes of clusters 10, 11 and 12, which are, by far, the largest and most compact.
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Fig. 9. Localization obtained with swLORETA of electric dipole sources for the scalp

distribution of alpha oscillations associated with clusters 10, 11 and 12 (thalamus,

precuneus and cuneus, respectively).

44



P

C

T

20 / 12 / 24%

20 / 13 / 20%

17 / 0 / 7%
19 / 3 / 15%

18 / 1 / 9%20 / 2 / 19%

T,C C,T P,T P,C T,P C,P

5

10

15

20

25

30

35

40

45

50

D
T

F
 v

al
ue

 (
× 

10
0)

Connection

Fig. 10. (Left) Causal flows between EEG-alpha generators in the precuneus (P),

cuneus (C) and thalamus (T). Each flow is characterized by three numbers. The first

number corresponds to the number of subjects for which the flow was significant

(p = 0.01). The second number is the number of subjects for which the flow was

identified as the most important inflow to the destination EEG source (p < 0.01).

The third number is the median DTF value across subjects. Based on the results, the

directional flows were ranked according to their qualitative significance into three

groups (identified by different line widths in the diagram): (i) the bidirectional

flow between thalamus and cuneus, (ii) the inflows to the precuneus originated in

cuneus and thalamus, (iii) the outflows from precuneus to cuneus and thalamus.

(Right) Spread across subjects of DTF values corresponding to directional flows of

activity between EEG-alpha generators in the precuneus (P), the cuneus (C) and

the thalamus (T). The horizontal axis depicts the six possible directional flows, with

X,Y meaning an inflow to generator X originated in generator Y. The vertical axis

represents corresponding DTF values (in percentages). The lines within the boxes

indicate the lower quartile, median and upper quartile values. The lines extending

from each end of the boxes show the extent of the spread of DTF values across

subjects. The notches in each box represent a robust estimate of the uncertainty

about the medians of each box.
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