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Abstract

This MATLAB toolbox integrates several state-of-the-art methods
for automatic removal of artifacts in the electroencephalogram (EEG).
The methods implemented so far are only for removal of ocular (EOG)
and muscular (EMG) artifacts. EOG removal methods include regres-
sion techniques based on Least Mean Squares (LMS), Recursive Least
Squares (RLS) and other adaptive algorithms. However, the core func-
tionality of the toolbox is a general-purpose artifact removal procedure
that consists on three steps. First, the EEG data is decomposed into
several spatial components using Blind Source Separation (BSS). Sec-
ond, a suitable criteria is used to automatically detect artifact-related
components. Third, the EEG data is reconstructed using only non-
artifactual components. The toolbox is designed so that the user can
easily expand it by adding new BSS algorithms and new criteria for
detecting artifactual components. Furthermore it can be easily inte-
grated as a plug-in into EEGLAB, which is a very popular graphical
toolbox for EEG analysis and visualization in MATLAB.
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1 License and disclaimer

Rights, ownership, and copyright information related to each MATLAB file
included in the AAR toolbox are individually stated in each file. This infor-
mation can also be found in the document readme.aar.txt, which is included
in the public release of this software. The current release is relatively stable
and many bugs have been corrected. However, it is intented to be used for
research and testing purposes only. No claims are made as to the validity
of the methods or the correctedness of the toolbox code and documentation.
Bugs and suggestions can be reported to german.gomezherrero@tut.fi.

2 Conventions

Names of files and folders as well as MATLAB commands are typeset in
a typewriter font. Any word typeset in typewriter font and starting
with the symbol $ represents a non-literal string, i.e. a string whose value
might be different for different operating systems, MATLAB versions, etc.
For instance, $MATLABROOT denotes the folder where MATLAB is installed.

3 Installation

Note that the current release of the toolbox (v1.3, release 04.12.2007) has
only been tested under MATLAB 7.4.0 (R2007a) and it might not work
properly on older versions of MATLAB. Some features of the toolbox (e.g.
the emg psd criterion) require MATLAB’s Signal Processing Toolbox v6.2 or
newer. Such version of the Signal Processing Toolbox is usually included in
MATLAB 7.0 (R14) and newer MATLAB releases.

The toolbox is installed following these steps:

1. Start MATLAB.

2. Download and install EEGLAB for MATLAB [6]. For information on
this step please visit EEGLAB’s homepage 1.

3. Download the most recent AAR release (aarcode.zip) from the Inter-
net 2.

4. Create the folder $EEGLABROOT\plugins\aar1.3 where $EEGLABROOT

denotes the folder where EEGLAB was installed.

1http://www.sccn.ucsd.edu/eeglab/
2http://www.cs.tut.fi/~gomezher/projects/eeg/aar/aarcode.zip
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Algorithm MATLAB files Ref. Strengths Weaknesses

LMS lms_regression [9] Simplicity Slow conv.
pop_lms_regression Stability

RLS crls_regression [10] Fast conv. Unstability
pop_crls_regression

Stable scrls_regression [14] Fast conv. Comp. time
RLS pop_scrls_regression Stability

H
∞ hinftv_regression [16] Fast conv. Unstability

pop_hinftv_regression Accuracy Comp. time
hinfew_regression

pop_hinfew_regression

Table 1: The regression algorithms in a nutshell

5. Add folder $EEGLABROOT\plugins\aar1.3 to Matlab’s path.

6. Uncompress aarcode.zip into $EEGLABROOT\plugins\aar1.3.

7. From MATLAB’s command window start EEGLAB by executing eeglab.
Under the ”Tools”menu there should be a sub-menu named ”Automatic
artifact removal” which contains the AAR functions.

4 EOG removal using regression

The current version of the toolbox (v1.3) includes four adaptive algorithms
for EOG removal using one or more EOG regression channels. The imple-
mentations of those algorithms are not optimized for speed so you should
expect a relatively large computation time. The first algorithm is based on
classical Least Mean Squares (LMS) [9], which is very simple and quite stable
if a small enough learning step is used. However, small learning steps lead
to very slow convergence. The second algorithm is based on Recursive Least
Squares (RLS) [9] which offers a much greater convergence speed at the cost
of reduced numerical stability. The third algorithm is a numerically stable
version of the RLS algorithm [14]. Note that the implementation of this lat-
ter algorithm is still very naive and inefficient so the required computation
time can be very large. The two last algorithms are based on H

∞ princi-
ples [16, 17]. The most important information related to these regression
algorithms is summarized in Table. 1.
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Figure 1: Interface window for EOG removal using LMS regression.

4.1 Least Mean Squares (LMS)

The graphical interface of the algorithm is shown in Fig. 1. The parameters
that can be specified in that window are described below:

• EOG channel indexes. The indexes of the EEG channels to be used as
reference (regression) channels. At least one channel has to be specified.

• Filter order (M). The number of taps of the adaptive filter. By in-
creasing the order we might remove more EOG artifacts but we also
increase the risk of overcorrection, i.e. removing useful information
from the EEG. Also, high filter orders increase the computation time,
slow down convergence and might lead to numerical unstability.

• Learning rate. Decreasing this parameter slows down convergence but
makes the algorithm more stable and viceversa.

• Store filter weights for channels. In this field we can specify the in-
dexes of the channels for which the values of the filter weights in each
iteration should be tracked. If this field is left empty, tracking is not
performed. Note that tracking the filter weights considerably increases
the computation time and the memory requirements of the algorithm.
The results of the tracking are stored in the field .Hh of the current
EEGLAB structure. More specifically, the evolution of the ith filter tap
for the EEG channel corresponding to the jth index specified in this
field is stored in EEG.Hh(i,j,:).
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Figure 2: Interface window for EOG removal using the RLS algorithm.

4.2 Conventional Recursive Least Squares (CRLS)

The interface of this algorithm is shown in Fig. 2. Most parameters shown in
that interface were already explained when we discussed the LMS algorithm.
There are, however, two new parameters:

• Forgetting factor (lambda). This parameter defines how fast the RLS
algorithm should forget past data samples. If we set it to 1 the algo-
rithm uses all available data samples to estimate the filter weights. As
we decrease this value the contribution of past samples to the weight
estimation decreases. This is useful in a non-stationary environment
where the spatial pattern of ocular artifacts (and therefore the opti-
mum filter weights) vary considerably in time. By contrary, in a sta-
tionary environment, discarding past samples leads to higher errors in
the estimation of the optimum filter weights.

• Sigma. This parameter defines the initial state of the filter. Please
read [10] for details.

4.3 Stable Recursive Least Squares (SRLS)

The algorithm RLS is well-known for its fast convergence but also for its
numerical unstability. However, stability of the RLS algorithm can be guar-
anteed by imposing bounds on the relative precision of the computations
performed in the different steps of the algorithm. This is explained in detail
in [14]. The current implementation of this algorithm is very slow and there-
fore we recommend using the conventional RLS algorithm whenever possible.
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Figure 3: Interface window for EOG removal using the stable RLS algorithm.

Only if the conventional RLS algorithm becomes unstable it is worth trying
its stable variant.

The graphical interface of the algorithm looks like Fig. 3. There, we can
set up the precision of the computations in bits. Increasing the precision
increases the accuracy of the filter weights estimates but also increases the
risk of numerical unstability.

4.4 Algorithms based on the H
∞ norm

The toolbox includes two adaptive algorithms (time varying and exponen-
tially weighted) based on the H

∞ principles for removing EOG artifacts using
one or more reference EOG channels. The details of these two algorithms are
described in [16], where it was found that H

∞-based algorithms clearly out-
performed the LMS algorithm. The graphical interfaces of these algorithms
are shown in Fig. 4 and Fig. 5. Their specific parameters are:

• Distance at t=0 to optimal solution (eta). This is a positive factor
reflecting the a priori knowledge of how close the initial filter weights
are to the optimal initial value. It corresponds to parameter Π0 in [16].
Smaller (resp. larger) values of this parameter are suitable when the
initial filter weights are believed to be far (resp. close) from its optimal
value. However, in most cases, the user does not need to change the
default value. This is especially true for the current implementation,
which does not let the user set the initial filter weights.

• Speed of variation of filter coefficients (rho). This is a positive factor
reflecting a priori knowledge about how fast the optimal filter weights
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Figure 4: Interface window for EOG removal using the TV H
∞ norm algo-

rithm

Figure 5: Interface window for EOG removal using the EW H
∞ norm algo-

rithm

vary with time. If the variation is believed to be slow (resp. fast) a
larger (resp. smaller) value might be more appropriate.

• Positive constant (epsilon). The definition of this positive constant can
be found in [16]. In general, the default value should work well in most
cases.

5 EOG and EMG removal using spatial filters

The toolbox implements a spatial filtering framework for removing different
types of artifacts. This framework consists on three basic steps. First, the
original EEG data is decomposed into a set of spatial components. Second,
artifactual components are identified using a suitable automatic criterion.
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Third, the EEG data is reconstructed by projecting back to the electrodes
only the non-artifactual spatial components. Within this framework, many
artifact removal algorithms can be defined by defining the way the spatial
components are estimated and by defining the criterion used for identifying
artifactual components. The default installation of the toolbox can decom-
pose the EEG data into a set of spatial components using:

• iWASOBI [23]. This is a efficient version of the algorithm WASOBI [24,
20], which is an asymptotically optimal Blind Source Separation (BSS)
algorithm for autoregressive (AR) sources. This algorithm is imple-
mented in file iwasobi.m, which is owned by Dr. Tichavsky. See
iWASOBI’s web-page [19] for related license information and to get the
latest version of iwasobi.m.

• EFICA [13]. This is an asymptotically efficient version of the well-
known Independent Component Analysis (ICA) algorithm FastICA [11,
18]. Rights and ownership related to the MATLAB file efica.m imple-
menting this algorithm are owned by Dr. Koldovsky. Please visit the
EFICA download web-page [12] to get the most up to date version of
efica.m.

• MULTICOMBI [22]. This is a BSS algorithm able to simultaneously
separate non-Gaussian and time-correlated sources. This algorithm is
implemented in file multicombi.m, which is owned by Dr. Tichavsky
and Dr. Koldovsky. You can visit MULTICOMBI’s web-page [21] to
get the latest version of multicombi.m.

• FCOMBI [8]. FCOMBI is a computationally more efficient version
of MULTICOMBI. However, FCOMBI is not as stable and reliable as
MULTICOMBI.

• SOBI [2]. SOBI uses second order statistics to find spatial components
that have non-zero time-delayed autocorrelations and zero time-delayed
cross-correlations. The toolbox uses the implementation of SOBI in-
cluded in EEGLAB.

• RUNICA [15]. This is the implementation of the ICA algorithm Info-
max [1], which is included in the default installation of EEGLAB.

• JADER [4]. This is Cardoso’s implementation of his well-known ICA
algorithm JADE [3]. The algorithm is not included in the toolbox
release but the toolbox is able to automatically detect it if it can be
found in the MATLAB’s path. JADE can be downloaded from ICA
Central [4].
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• FastICA [11, 18]. A very popular ICA algorithm that finds maximally
non-Gaussian components. FastICA is not included in the toolbox
release but it will be recognized by the toolbox if it can be found in the
MATLAB’s path. FastICA can be downloaded from the FastICA page
at the Helsinki University of Technology [18].

• BSSCCA. Canonical Correlation Analysis (CCA), as defined in [5]. It
projects the observed EEG data into maximally auto-correlated com-
ponents.

• PCA. Decomposes the data into its principal components.

The criteria that are included in the current version of the toolbox are:

• eog fd. This criterion was proposed in [7]. It marks as artifactual the
components with smaller fractal dimension. Conceptually, components
with low fractal dimensions are those who are composed of few low-
frequency components. This is often the case of ocular activity and
therefore this is a suitable criteria for detecting ocular (EOG) compo-
nents.

• eog corr. This criterion considers as EOG-related those components
whose cross-correlation with any of the available reference EOG chan-
nels exceed certain threshold.

• emg psd. This criterion considers to be EMG-related those components
whose ratio of average power in the typical EEG and EMG bands is
below certain threshold.

By default, the toolbox uses a combination of iWASOBI and the criterion
eog fd to automatically correct EOG artifacts in the EEG. This default com-
bination can be called from the EEGLAB menu ”Remove EOG using BSS”,
which opens a dialog like in Fig. 6. Using the graphical interface, the user can
specify the length and shift between correlative analysis windows. A window
shift of 1 second and a window length of 2 seconds means that the first analy-
sis window (on which the BSS-based spatial filters will be obtained) will cover
the time range 0-2 seconds, the second analysis window will correspond to
the time range 1-3 seconds, the third window will cover the time 2-4 seconds
and so on. Note that the optimum window temporal range would be that
that covers enough data samples to learn the artifactual spatial components
and as few as possible neural EEG components. Therefore, there is no easy
and objective way of selecting the optimum window length. If our artifacts
have relatively stable spatial patterns (e.g. EOG artifacts) a longer window

10



length might be more appropriate. However, a too long window might cause
removal of some EEG components due to the low spatial resolution of the
EEG recordings. If our artifacts have relatively short duration (e.g. sudden
EMG bursts), a short analysis window might be more appropriate.

Additionally, the user can pass extra parameters to the BSS algorithm
and to the criterion. A parameter that is common to all BSS algorithms is
’eigratio’, which determines the number of principal components that will
be kept in the pre-processing PCA step which is performed before any BSS al-
gorithm. The number of PCA components will be such that the ratio between
the largest and smallest eigenvalue of the PCA-transformed data matrix is
below the specified ’eigratio’. A large ’eigratio’ will most likely not
remove any principal component but might lead to numerical unstability of
the BSS algorithm due to an ill-conditioned covariance matrix. By contrary,
a small value of ’eigratio’ will cause some inaccuracies due to the removal
of some principal components but will enforce the data covariance matrix to
be well-conditioned. By default the ’eigratio’ is 1e6.

An important option that can be passed to all available rejection criteria
is the ’range’ of components that should be removed. That range specifies
the minimum and maximum number of components that are to be marked as
artifactual in each analysis window. A range like [5,5] enforces the rejection
of the 5 components ranked as most likely to be artifactual by the respective
criterion. Indeed, increasing the number of rejected components allows for
removing more EOG but increases the chances of removing also useful EEG
activity of neural origin. If the user selects the criterion eog corr, the index
of at least a reference EOG channel must be provided through the graphical
interface.

EMG correction can be performed by selecting the EEGLAB menu ”re-
move EMG using BSS”, which opens an interface window as in Fig. 7. By
default, the BSS algorithm used is based on CCA as in [5]. Currently, the
only automatic criterion that can be used for detecting EMG components is
emg psd. The option ’range’ allows to reject a fixed number of components
in each analysis window, as explained above. Another important parameter
of the emg psd criterion is the ratio of average power in the typical EEG
band and in the typical EMG band. For instance, the option ’ratio’,10

makes the criterion to mark as EMG-related only those components having
less than 10 times more average power in the EEG band than in the EMG
band. The boundary between EEG and EMG bands can be specified using
the parameter ’femg’. The sampling rate of the data also needs to be speci-
fied using the parameter ’fs’. The user can also specify with the parameter
estimator, the type of spectral estimator that will be used to estimate the
power in the EEG and EMG bands. By default the estimator used is a
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Figure 6: Interface window for EOG removal using spatial filters.

Hamming-windowed Welch periodogram with segment length equal to the
analysis window length. You can check the help of the MATLAB function
implementing the different criteria and BSS algorithms for more details on
the available options.

6 Correction examples

In this section we show few correction examples obtained with a long-term
EEG recording from a patient suffering Mesial Temporal Lobe Epilepsy. The
data was provided by our collaborators at the Kaholieke Universiteit Leuven
(Belgium) and was collected from 21 scalp electrodes placed according to the
international 10-20 System with addition electrodes T1 and T2 on the tem-
poral region. The sampling frequency was 250 Hz and an average reference
montage was used. The dataset did not have EOG channels and therefore
regression-based techniques were not suitable for removing EOG artifacts.
Thus, we used the default BSS-based EOG removal algorithm included in
the toolbox to suppress as much EOG activity as possible. Subsequently, we
used the EMG correction algorithm to remove EMG artifacts. It is important
to notice when using any of the BSS-based algorithms included in the toolbox
that the corrected dataset will be rank deficient. Also, the order in which
the algorithms are applied is important and the results differ depending on
the order in which EOG and EMG artifacts are removed. In general, we
have observed that slightly better results are obtained when removing EOG
artifacts first.

In Fig. 8 we show a frame of original EEG spanning from second 275
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Figure 7: Interface window for EMG removal using spatial filters.

to second 290. Observe that this EEG frame contains just few blinks and
almost no EMG artifacts. In Fig. 9 we show the result of the automatic EOG
correction algorithm. Notice how the blinks were almost perfectly removed
while the clean EEG was not significantly altered. In Fig. 10 we show the
result of applying EMG correction algorithm on the EOG corrected dataset.
We can observed that Fig. 9 and Fig. 10 are almost identical, which is a
desirable result since there was very little EMG activity in this EEG frame.

In Fig 11 we show the EEG frame that covers the temporal range from
second 320 to second 335, which corresponds to the first clinical signs of a
seizure. This frame is heavily contaminated by EMG artifacts and contains
also some ocular artifacts. In Fig 12 is the result of removing the EOG
artifacts and in Fig. 13 after removing also the EMG artifacts.

In Fig. 14 appears the EEG from second 380 to second 395. This EEG
frame contains little EOG activity but is considerably distorted by several
EMG bursts. In Fig. 15 is shown the output of the EOG correction algorithm.
As can be observed, the algorithm did not modified significantly the data as
was expected. In Fig. 16 appears the results of removing both EOG and
EMG artifacts. Notice that most EMG artifacts were removed, while the
sharp quality ictal theta activity was preserved.

7 Version history

• Release 09-12-2007, version 1.3: minor changes.

– SOBI is again the default algorithm for BSS-based EOG correc-
tion.
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Figure 8: Original EEG frame.
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Figure 9: EOG corrected frame.
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Figure 10: EOG and EMG corrected frame.
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Figure 11: Original EEG frame.
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Figure 12: EOG corrected frame.
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Figure 13: EOG and EMG corrected frame.
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Figure 14: Original EEG frame.
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Figure 15: EOG corrected frame.
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Figure 16: EOG and EMG corrected frame.

– Documentation has been updated and correction examples have
been included.

• Release 04-12-2007, version 1.3: minor bugs and few major bugs
corrected.

– A few minor and major bugs were still left in the BSS interface
functions and have now been corrected.

– The interface functions use now pinv instead of inv to avoid nu-
merically unstable results when the data covariance matrix is close
to singular. This numerical unstability might be the reason for
the small differences that were observed when running the arti-
fact correction methods under different MATLAB versions and
under different operating systems.

– The default window length in the automatic EMG correction method
is now twice as long as it was before.

• Release 03-12-2007, version 1.3: major bugs corrected.

– Several major bugs have been corrected in the functions that act
as interface to the BSS algorithms.
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– Parameters passed to the BSS algorithms were ignored in previ-
ous releases due to a bug in function autobss.m. This has been
corrected.

• Release 29-11-2007, version 1.3: minor bugs corrected.

– Minor bugs corrected.

• Release 28-11-2007, version 1.3: major bugs corrected.

– A major bug in function emg_psd.m has been corrected. This
bug was causing the emg_psd.m criterion to incorrectly detect the
EMG-related components.

– Minor update of function pop_autobssemg.m to adapt to the new
version of function emg_psd.m

– The criterion emg_psd.m now accepts a new parameter that allows
the user to select the spectral estimator to be used to compute the
EEG average power and the EMG average power of each estimated
component.

– A compatibility issue related to function emg_psd.m has been
solved. Previously to this change, the criterion emg_psd was pro-
ducing different results when using MATLAB’s Signal Processing
Toolbox 6.6 and previous when using older versions of the Signal
Processing Toolbox. Now it produces ”almost” the same results.

– Several other minor bugs corrected.

• Release 07-11-2007, version 1.3: minor update.

– pop_autobssemg now automatically passes the sampling rate to
emg_psd.m

– First draft of the toolbox documentation.

• Release 31-10-2007, version 1.3: minor update.

– Minor bugs corrected.

– EFICA v1.9 was updated with EFICA v2.0 (implemented by Z.
Koldovský).

• Release 29-10-2007, version 1.3: iWASOBI, EFICA, COMBI, FCOMBI
added.

– Few minor bugs corrected.
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– Slightly improved documentation.

– A sample EEG dataset has been included in the release.

– Added several new algorithms for BSS: iWASOBI, EFICA, COMBI,
FCOMBI.

• Release 01-07-2006, version 1.2:, Regression-based and PCA-based
EOG correction added.

– Automatic EOG correction using Least Mean Squares (LMS) adap-
tive filtering. This is implemented in lms_regression.m.

– Automatic EOG correction using the conventional Recursive Least
Squares (RLS) adaptive algorithm. This is implemented in func-
tion crls_regression.m.

– Automatic EOG correction using an stable version of the RLS
algorithm. This is implemented in scrls_regression.m.

– Automatic EOG correction using two H-infinity regression meth-
ods. These are implemented in functions hinftv_regression.m

and hinfew_regression.m.

– Automatic EOG correction using Principal Component Analysis
(PCA).

– Some bugs corrected.

• Release 10-04-2006, version 1.1: EMG correction included.

– Automatic correction of EMG artifacts using canonical correla-
tion analysis. This is implemented in functions bsscca.m and
emg_psd.m.

– Function BSS has been modified to separate the actual BSS algo-
rithm from the components selection criteria.

– Interfaces to BSSCCA, FastICA, JADE and RUNICA (implemen-
tation of Infomax included in the EEGLAB toolbox) have been
included.

– Ill-conditioning of the data covariance matrix is now handled prop-
erly.

– Some minor bugs corrected.

• Release 27-02-2006, version 1.0: original release.

– Automatic correction of EOG artifacts using Blind Source Sepa-
ration (BSS).

– Only an interface to SOBI is provided.
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